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ABSTRACT
Learning from Demonstrations (LfD) refers to using expert demon-

strations combined with the reward information given by the en-

vironment to jointly guide the learning of policy in Reinforce-

ment Learning. Previous LfD methods usually assume that pro-

vided demonstrations are perfect., while in real-world applications,

demonstrations are often collected from multiple sources, which

may contain imperfect ones. In this work, we aim to deal with the

latter situation, i.e., Learning from Imperfect Demonstrations (LfID),
where demonstrations only include trajectories with state-action

pairs. To this end, two challenges need to be solved: evaluation

for the demonstrations and calibration for the bonus model. Both

challenges can be more severe in sparse reward environments, since

the exploration problem will appear while learning. In this work,

we focus on bridging the exploration and LfID problems in view of

anomaly detection, and further proposing AGPO method to deal

with these problems. Compared with state-of-the-art methods, em-

pirical studies on some challenging continuous control benchmarks

show the superiority of AGPO in this scenario.
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1 INTRODUCTION
Reinforcement Learning (RL) [38] has been widely used in many

challenging sequential decision-making tasks, such as autonomous

vehicle [11, 21, 34], video game playing [3, 8, 31, 46] and robotic

control [14, 22], and has achieved significant success. They mainly

focus on learning a desired policy through interactions with the

environment and the feedback of reward signals. Besides, if there

exist some expert demonstrations, we can use them to speed up

the policy learning. This kind of methodology is so-called Learning

from Demonstrations (LfD) [1, 35]. LfD methods use additional
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Figure 1: Overview of the methodology of our approach.
Most of the off-the-shelf exploration methods can be gen-
eralized to the anomaly detection process, and this process
can be used to solve the learning from imperfect demonstra-
tions problem.

demonstrations collected from experts to initialize the policy, es-

tablish additional constraints or add regular terms to the objective

to guide the training of the policy, so as to reach the potential high

reward area faster. Besides, LfD is different from imitation learning

[16, 49] and offline reinforcement learning [18, 23], in which during

the training process, the agent can interact with the environment

and obtain the true reward at the same time.

Previous LfD methods usually assume that the expert demonstra-

tions are collected from an optimal policy, which is very costly in

real-world applications due to the demand for high-quality expert

demonstrations. So it is necessary to consider the situation where

the demonstrations are collected from different experts with distinct

qualities. This learning problem is so-called Learning from Imperfect
Demonstrations (LfID). Under this setting, traditional LfD methods

may be affected by poor quality demonstrations, which may mis-

lead the policy into local optima, and further obtain a worse policy

than standard RL methods without additional demonstrations.

In this work, we seek to solve the LfID problem without using

any additional information. One of the most challenging problems

under LfID is that it is difficult to distinguish demonstrations quality

without any other supervision. Therefore, previous work assigns

the same importance to all demonstrations can hurt the original

policy learning. In the imperfect demonstration learning scenario,

high-quality demonstrations can provide positive guidance through-

out the training process, while low-quality demonstrations may

mislead the policy into sub-optima. Therefore, we need to distin-

guish the quality of the demonstrations. Besides, when exploring

the environment, there exist many collected samples that previous



methods did not make full use of. So we aim to use these samples

to fix the misleading issues of the imperfect demonstrations.

More specifically, when dealing with exploration problems, a

widely used assumption is that “novel” states represent “good”

states [5, 40], which motivates the policy to explore more unvis-

ited states with potentially higher rewards. Most of these methods

guide the policy to explore high-reward areas by estimating the

anomaly degree of current states compared with previous experi-

ence, which means that this process can actually be generalized

to the anomaly detection process, i.e., if a roll-out sample is more

anomalous, the more likely it would be a “novel” sample. Moreover,

some anomaly detection methods can be utilized as the one-class

classification to estimate the probability of the current sample be-

longing to the expert demonstrations. In such a case, we can use

homogeneous models with the same metrics to distinguish the

demonstrations and the roll-out samples meanwhile calibrate the

model from demonstrations, in order to guide the policy learning

better. Inspired by this idea, we propose a novel method named

Anomaly Guided Policy Optimization (AGPO) to deal with LfID

problems, with anomaly detection metrics. The overview of this

idea is illustrated in Figure 1.

We evaluate AGPO on multiple challenging continuous control

tasks including MuJoCo [43] and Deepmind Control Suite [42].

Extensive experimental results demonstrate the stability and effec-

tiveness of AGPO, which can surpass existing LfD methods, and

achieve high performance evenwhen the proportion of high-quality

demonstrations is very small.

The contributions of our work can be summarized as follows:

• We propose an anomaly-guided methods to solve the LfID

problem named AGPO. Our method can guide the policy to

obtain promising results with imperfect demonstration.

• We combine expert demonstrations with samples collected

online to continuously modify the bonus function during

the training process. As far as we know, we are the first to

adopt this paradigm to design bonus functions.

• Experiments on multiple continuous control tasks show that

our method can achieve better performance than the previ-

ous methods when the source and quality of expert examples

are diverse.

2 RELATEDWORK
Learning from Demonstrations (LfD) is a learning variety of rein-

forcement learning by adding some prior demonstrations to speed

up the policy learning. Previous methods usually use the provided

demonstrations in twoways. The first type of method uses the given

demonstrations to initialize the model, such as behavior cloning

[4]. Such methods allow the model to get relatively high rewards

at the beginning of training. But when the number of demonstra-

tions is small or the model encounters a state that differs greatly

from the distribution of demonstrations, such methods may fail to

guide the model to make good decisions. DQfD [15] and DDPGfD

[45] proposed in recent years also belong to this type of method.

Different from previous behavior cloning methods, these two meth-

ods adopt off-policy sampling, and place the demonstrations in the

buffer as the augmented the data for the subsequent policy update

process. So they also need the reward signals in demonstrations.

Another type of methods use the “bonus” as an additional reward

incentive to guide the policy learning, by measuring the similarity

between the samples from the learner and the expert. Most of the

recent works on LfD have adopted this paradigm to fully utilize

the demonstrations. Kang et al.[20] proposed POfD which utilizes

Generative Adversarial Networks (GAN) [13] to measure the dis-

crepancy. They train a discriminator to distinguish between the

expert demonstrations and the samples collected from the envi-

ronment, and train a policy to fool the discriminator as much as

possible. Brys et al.[6] and Wu et al.[48] use demonstrations to

establish a potential function and adopt the reward shaping [28]

method for value iteration. We refer to this type of method as the

“bonus-based” method. Our method also belongs to this category.

While in reality, the demonstrations may be collected frommulti-

ple experts with different levels, namely imperfect demonstrations.

We refer to the LfD problem using this type of demonstration as

Learning from Imperfect Demonstrations (LfID). The setting of

LfID is more realistic yet challenging, for simply matching the sam-

ple distribution may mislead the agent into imitating low-quality

demonstration and falling into local optima. In recent years, there

have been some studies on LfID. Jing et al. [19] proposed to use

imperfect demonstrations as constraints. Rather than forcing the

agent to completely imitate the demonstrations, their method only

uses the true reward to update the policy when the distribution of

samples from the current policy is relatively similar to that from the

demonstrations. Gao et al. [12] proposed Normalized Actor-Critic

(NAC), which is an off-policy actor-critic method using demonstra-

tions as initialization, and it also needs the true rewards in demon-

strations, as in DQfD and DDPGfD. Besides, some other studies

use imperfect demonstrations in the imitation learning scenario

[41, 48], but such methods usually require additional information

about the quality of the demonstrations or assumptions about the

composition of the samples. Under the setting of LfID, we do not

make assumptions about the composition of the demonstration,

and no additional information other than the standard environment.

We committed to tackling this challenging setting in this work.

Another related branch of our work is anomaly detection [10,

24, 25] which refers to the problem of finding patterns in data

that do not conform to expected behavior. Also it has achieved

great success in many domains, including intrusion detection [17],

healthcare [33], and new class detection [9, 27]. Besides, some recent

works studied detecting anomalies using RL methods [26, 30]. But

here we focus on improving the LfID policy learning with the

anomaly detection methods instead. And the following sections

will show how.

3 PRELIMINARIES
LfID problem is a variety of the reinforcement learning problem,

meanwhile, the reinforcement learning process is usually abstracted

into a Markov Decision Process (MDP), which can be represented

by a tuple M = (S,A,R,P, 𝛾, 𝜇). Here, S and A denote the set of

all possible states and actions respectively, R : S × A →R is the

reward function measuring the quality of a transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1),
P : S × A × S →[0, 1] denotes the transition probability condi-

tioned on state-action pair, 𝜇 : S →[0, 1] is the initial state distri-
bution and 𝛾 ∈ [0, 1] is the discount factor.



The goal of reinforcement learning is to find a policy that maxi-

mize the expected cumulative reward shown in Equation (1):

𝜋∗ = argmax

𝜋 ∈Π
E

[ ∞∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]
, (1)

where Π is the set of all possible policies. The setting of LfD differs

from RL in that additional expert demonstrations are given to guide

the learning process. We denote each set of the demonstrations as

a set of state-action pairs D = {(𝑠1, 𝑎1), (𝑠2, 𝑎2), ..., (𝑠𝑛, 𝑎𝑛)}. The
“bonus-based” LfD methods use demonstrations to set up bonus

function to guide the agent, which is denoted as 𝐵(𝑠, 𝑎, 𝑠 ′) here. The
target of the “bonus-based” method is to maximize the expectation

of sum of true reward and bonus, which is expressed as follows:

𝜋∗𝐵 = argmax

𝜋 ∈Π
E

[ ∞∑
𝑡=0

𝛾𝑡 (𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝐵(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1))
]
. (2)

Another concept is occupancy measure [39], which is defined

as Equation (3) to characterize the state-action pairs that an agent

encounters when navigating the environment with policy 𝜋 :

𝜌𝜋 (𝑠, 𝑎) = 𝜋 (𝑎 |𝑠)
∞∑
𝑡=0

𝛾𝑡𝑃 (𝑠𝑡 = 𝑠 |𝜋). (3)

It has been proved that there is a one-to-one matching between

policy 𝜋 and occupancy measure 𝜌 . That is to say for any possi-

ble occupancy measure 𝜌 , there is only one unique policy 𝜋 that

generate this occupancy measure.

Furthermore, the imperfect demonstration is an important con-

cept in our work, which refers to the demonstration collected from

𝑁 different experts of different levels. 𝑁 is the total number of ex-

perts. Non-optimal demonstrations are gathered from experts that

correctly understand the task but cannot operate optimally.To better

guide the training, we will ensure that part of the demonstrations

are from high-quality experts. But we do not make other additional

assumptions about the composition of the demonstrations. For each

expert policy, we collect a set of state-action pairs as demonstrations,

denoted asD𝑖 = {(𝑠𝑖1, 𝑎𝑖1), (𝑠𝑖2, 𝑎𝑖2), ..., (𝑠𝑖𝑛𝑖 , 𝑎𝑖𝑛𝑖 )}, where𝑛𝑖 is the
number of state-action pairs collected from expert 𝑖 . The imperfect

demonstration used in our work is the union set of all demonstra-

tions, denoted as D =
⋃𝑁

𝑖=1 D𝑖 . We denote the proportion of the

samples generated by each expert as 𝑝 , 0 ≤ 𝑝𝑖 ≤ 1,
∑𝑁
𝑖=1 𝑝𝑖 = 1, the

occupancy measure corresponding to each expert’s strategy is de-

noted as 𝜌𝑖 . The occupancymeasure of the imperfect demonstration

𝜌
ID
(𝑠, 𝑎) is represented in Equation (4).

𝜌
ID
(𝑠, 𝑎) =

𝑁∑
𝑖=1

𝑝𝑖 ∗ 𝜌𝑖 (𝑠, 𝑎) (4)

We denote the policy corresponding to 𝜌
ID
as 𝜋

ID
. It is obvious that

𝜋
ID
is non-optimal. Thus, under the setting of LfID, the policy will

be misled if it naively follows the imperfect demonstrations.

4 PROPOSED METHOD
Previous works tend to learn the policy by optimizing the similarity

between current policy and expert policy [19, 20, 47], which is de-

picted by the occupancy measures. One of the most representative

methods of this learning style is Policy Optimization from Demon-

strations (POfD) [20], which gives an additional bonus based on

the discrepancy of occupancy measure. The objective of POfD is:

𝜋
POfD

= argmin

𝜋 ∈Π
max

𝐷
−E

[ ∞∑
𝑡=0

𝛾𝑡 (𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝐵(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1))
]
− 𝜆1𝐻 (𝜋)

+ 𝜆2E𝜋 [log(𝐷 (𝑠, 𝑎))] + E𝜋E
[log(1 − 𝐷 (𝑠, 𝑎))] ,

(5)

where𝐻 (𝜋) is the causal entropy regularizer, 𝜋E is the expert policy
used to generate demonstrations. The discriminator 𝐷 : S × A →
[0, 1], which tries to distinguish state-action pairs generated by

trained policy and expert, is the core of the method. In order to

achieve this objective, POfD uses -𝜆2 log𝐷 (𝑠, 𝑎) as a bonus to guide
the policy learning. This method can get good results under the

(a) POfD (b) Ours

Figure 2: Comparison of our method and POfD. The black
line divides the high bonus area from the low bonus area. In
Figure (b), dashed line represents the dividing line generated
by the sample density of the expert demonstrations, and the
solid line represents the dividing line after revise.

setting of LfD, but when it comes to the setting of LfID, this method

may suffer from the following two problems:

• As shown in Figure 2(a), low-quality demonstrations are

treated equally as high-quality ones. Under the setting of

LfID, giving the same high bonus to both high and low quality

samples will be misleading.

• When the given data is not similar to neither the collected

sample nor the expert sample, it is still possible to receive a

higher bonus.

These problems prevent the previous LfD methods from performing

well under the LfID setting.

4.1 Anomaly Based Distribution Estimation
To address the above two issues, we propose a novel bonus func-

tion by estimating the anomalies of state-action pairs to guide the

learning of policy. The anomalous degree of gathered samples can

measure the quality of current data. Meanwhile, it can measure

whether the gathered samples belong to expert data (by regarding

the demonstrations as normal data and other samples as anomalous

data). Based on this idea, we can use the homogeneous anomaly

detection model to solve both two tasks simultaneously and make

them calibrate each other.

Intuitively, from the definition of occupancy measure in Equa-

tion (3), the larger the value of occupancy measure, the more likely



a certain state-action pair is to be accessed by the corresponding

policy. Under the case of undiscounted MDP, where the discount

factor 𝛾 equals 1, the occupancy measure in Equation (3) can be

simplified as:

𝜌 (𝑠, 𝑎) = 𝜋 (𝑎 |𝑠)
∞∑
𝑡=0

𝑃 (𝑠𝑡 = 𝑠 |𝜋) . (6)

From the equation, we can see that in undiscounted MDP, the

occupancy measure 𝜌 represents the probability of a state-action

pair being accessed by its corresponding policy 𝜋 . Therefore, we

can regard the occupancy measure as a distribution in the state-

action space, which is usually estimated by sampling multiple times

in the environment using the corresponding policy. Obviously, the

more considerable the occupancy measure corresponding to a state-

action pair, the higher probability this pair would appear with the

policy 𝜋 .

With this measurement, we propose to directly model the dis-

tribution of the state-action pairs in expert demonstrations and

guide the policy learning by rewarding the pairs that follow such

distribution. As shown in Figure 2(b), the region within the black

dashed line indicates the area that follows the distribution of demon-

strations, and the rest of the areas are out-of-distribution (OOD)

region (orange dots). Anomaly detection methods are commonly

used to address the OOD detection problem. The data following

the distribution region is called inlier, and the data out of distribu-

tion region is called anomaly or outlier. The output of the anomaly

detector is a real value between 0 and 1, measuring the anomalous

degree of a sample. We denote the anomaly detector we use as

𝐴
d
: S × A → [0, 1], the higher the output value is, the more

abnormal the corresponding sample will be. In such a case, the

estimated distribution can be denoted as:

𝜌
ID
(𝑠, 𝑎) = 1 −𝐴

d
(𝑠, 𝑎)∑

(𝑠′,𝑎′) ∈S×A [1 −𝐴
d
(𝑠 ′, 𝑎′)] . (7)

On the other hand, since the denominator is fixed all the time,

the bonus can be directly assigned as the numerator:

𝑏
d
(𝑠, 𝑎) = 1 −𝐴

d
(𝑠, 𝑎). (8)

4.2 Anomaly Re-weighted Bonus
As discussed above, the key issue under the LfID setting is how

to guide the agent to pay more attention to high-quality demon-

strations. We found that the samples collected during the training

process were not fully utilized. Therefore, we propose to calibrate

the distribution estimation in the Equation (8) using the collected

samples to better depict the feature of high-quality demonstration.

To motivate the agent to explore more states to reach the poten-

tial high reward area, a commonly used assumption is that a “novel”

state tends to be a “good” state. “Novel” states refer to states that are

rarely accessed [5, 40] or exhibit different characteristics from the

previous states [7, 32]. In short, states that are out-of-distribution

from previously visited states are “novel” states as we need. Our

method uses this assumption to re-weight the bonus function in

Equation (8). Since our bonus function is designed according to the

distribution of demonstrations, this weight can be regarded as a

modification of sample distribution to better describe the feature

of the high-quality policy.

(a)

(b) (c)

Figure 3: (a): the map of the maze. The lower left corner is
the entrance and the upper right corner is the target. (b): the
reward map of the trajectories. The lighter the color is, the
higher quality of the trajectory will be. (c) the score map of
the trajectories. The lighter the color is, the more anomaly
of the trajectory will be.

On the other hand, the anomalous degree can properly depict

how “novel” the current state is. So our method uses previously

visited states to build an anomaly detection model and use it to

evaluate the anomalous degree of the current state. The higher the

output value of the model is, the more anomaly the corresponding

state would be. This property is exactly what we desire to evaluate

the quality of samples. So we use this result to modify the bonus

function in the Equation (8), to give a higher bonus to the “novel”

states and reduce the bonus of the “old” states.

To show how the anomaly detection model can evaluate the qual-

ity of states, we collect several trajectories with different quality in a

100×100Maze environment (Figure 3(a)) and build an Isolation For-

est [25] anomaly detector on these samples and use it to score them.

As shown in Figure 3, Figure 3(b) shows the collected trajectories,

lighter color means higher quality of trajectory, while Figure 3(c)

shows the score given by anomaly detector, lighter color means

higher score. The quality of trajectories matches perfectly with the

anomaly score, which demonstrates that the anomaly detection

method can ideally reflect the difference of sample’s quality.

Here we use the “quality weight” as the measure to re-weight

the bonus model, denoted as 𝑤q. Meanwhile, 𝐴𝑞 (𝑠) : S → [0, 1]
denotes a state based anomaly detector. For a transition (𝑠, 𝑎, 𝑠 ′),
the quality weight can be estimated by its anomalous degree of the



next state 𝑠 ′:
𝑤q (𝑠, 𝑎, 𝑠 ′) = 𝐴q (𝑠 ′). (9)

Combining Equation (9) and Equation (8), the total reward for our

method is shown in Equation (10). 𝐵(𝑠, 𝑎, 𝑠 ′) is the bonus function,
while𝑇 (𝑠, 𝑎, 𝑠 ′) is the combined reward for a transition. 𝛽 is a hyper-

parameter balancing the reward given by environment and bonus:

𝑇 (𝑠, 𝑎, 𝑠 ′) = 𝑅(𝑠, 𝑎) + 𝛽𝐵(𝑠, 𝑎, 𝑠 ′), (10)

where

𝐵(𝑠, 𝑎, 𝑠 ′) = 𝑤q (𝑠, 𝑎, 𝑠 ′) × 𝑏
d
(𝑠, 𝑎) = 𝐴q (𝑠 ′) × [1 −𝐴

d
(𝑠, 𝑎)] .

(11)

Then we can use policy optimization methods such as Proximal

Policy Optimization (PPO) [37] to update the policy using𝑇 (𝑠, 𝑎, 𝑠 ′)
as reward. We name our method Anomaly Guided Policy Opti-

mization(AGPO) as we guide the policy learning and the bonus

calibration with the anomaly detection methodology. The training

procedure of AGPO is illustrated in Algorithm 1.

Algorithm 1 Anomaly Guided Policy Optimization(AGPO)

1: Given demonstrations D, Environment 𝑒𝑛𝑣

2: Initialize Policy 𝜋

3: Update frequency for 𝐴q: 𝑡update
4: 𝐴

d
=Build_Detector(D) ⊲ Build anomaly detector using

demonstration

5: D𝑞=Sampling(𝑒𝑛𝑣, 𝜋 )

6: 𝐴q =Build_Detecor(D𝑞 ) ⊲ Initialize quality weight using

samples collected by initialized policy 𝜋

7: D𝑞 = ∅
8: for 𝑖𝑡𝑒𝑟 = 1; 𝑖𝑡𝑒𝑟 <= num_update; 𝑖𝑡𝑒𝑟 + + do
9: 𝑠0 =Initialize_Env(𝑒𝑛𝑣)

10: for 𝑡 = 0; 𝑡 <= num_samples; 𝑡 + + do
11: 𝑎𝑡 = 𝜋 (𝑠𝑡 )
12: 𝑠𝑡+1, 𝑅𝑡 = 𝑒𝑛𝑣 .𝑠𝑡𝑒𝑝 (𝑠𝑡 , 𝑎𝑡 )
13: Calculate 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) by Equation (10)

14: Update policy 𝜋 using Policy Optimization method (e.g.,

PPO) with 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
15: D𝑞 = D𝑞 ∪ {𝑠𝑡+1}
16: end for
17: if 𝑖𝑡𝑒𝑟%𝑡

update
== 0 then

18: 𝐴𝑞 =Update_Detector(D𝑞 )

19: end if
20: end for

4.3 Discussion
Ourmethod is closely related to the problems of LfD and exploration

in RL. Here we discuss the connection between our method and

these two learning problems.

Learning from Demonstration. Occupancy measure match-

ing is a useful method to fully utilize the demonstrations under the

setting of LfD. Policy Optimization from Demonstrations(POfD)

[20] provides bonus to the policy based on how well the policy

matches the demonstrations. Their method requires expert strate-

gies to be optimal. But when this requirement is not met, the bonus

will often mislead the trained policy. To solve the problem of imper-

fect demonstration, Jing et al.[19] only uses samples as constraints:

When the occupancy measure of the current policy is relatively

similar to that of the demonstration, only real rewards will be used

to update the policy. This method requires the careful design of

hyper-parameters to set up constraints. Instead, in this work we

take advantage of the connection between the demonstrations and

the collected data. Our method circumvent the poison of imperfect

demonstrations more naturally, meanwhile calibrating the bonus

function throughout the whole learning process to keep it abreast

of the continuously updated policy.

Exploration in RL. The assumption that “novel” states tend

to be “good” states, as the re-weight term in our bonus function,

is commonly used in exploration RL methods [7, 32]. In the envi-

ronments with discrete states, count-based methods such as Upper

Confidence Bound (UCB) [2] are commonly used to give a higher

bonus to states that are rarely visited. When the state space is large

or continuous, previous methods either discretize the state [29, 40]

or measure the uncertainty of their estimated models to the cur-

rent state [7, 32]. These methods encourage the agent to visit more

anomalous (compared with the collected ones) states, which can

be modeled by off-the-shelf anomaly detection methods, to reach

rarely visited states in discrete space or uncertainty states in con-

tinuous space. This is closely related to our anomaly re-weighting

term. Although the exploration methods can guide the agent to

reach the potential high-reward areas, the exploration direction

is often random and with high variance. On the other hand, with

the help of provided demonstrations, the agent can explore the

environment more effectively.

Our method combines the characteristics of LfD and exploration,

and solves them simultaneously using the classic unsupervised

anomaly detection methods, thus solving the LfID problem simply

yet effectively. As far as we know, our work is the first to solve the

LfID problems by connecting these two research areas.

Table 1: Average return of collected trajectories.

Environment Source 1 Source 2 Source 3 Source 4

HalfCheetah 5472 2018 1513 1040

Hopper 2579 1251 1115 859

Reacher -1.8 -3.4 -5.1 -9.0

Swimmer 128.3 116.5 84.8 48.7

Walker2d 6185 3921 1037 455

Cartpole.Swingup_Sparse 825 309 121 10.6

Finger.Spin 954 838 590 293

5 EXPERIMENT
For the LfID problem, we raised three questions. The following

experiments will verify whether our method can solve these issues.

Q1. Can our method successfully estimate the quality of demon-

strations without additional information?

Q2. Can our methods outperform prior methods given imperfect

demonstrations?

Q3. Whether our method is robust with different ratio of imper-

fect demonstrations?

In order to investigate the above issues, we conducted a number of

experiments in seven challenging continuous-control environments,

separately HalfCheetah, Hopper, Reacher, Swimmer, andWalker2d in

MuJoCo [43] as well as Cartpole.Swingup_Sparse and Finger.Spin in



Deepmind Control Suite[42]. We also modified the original MuJoCo

environment and designed sparse reward tasks forWalker2d and

HalfCheetah environments to further validate our method.

5.1 Settings
To evaluate the effectiveness of our method, we collected several

trajectories from diverse demonstrators of different levels. We ob-

tain the high-quality demonstrator (Source 1 in Table 1) by running

PPO [37] on dense-reward environments for 1e8 steps. Meanwhile,

to generate low-quality demonstrations, we use agents that are

insufficiently trained (less than 1e7 steps with PPO) as part of the

imperfect demonstrators. To make the demonstrators more diverse,

we also run TRPO and DDPG for 1e7 and 5e6 steps to generate

imperfect policies. After that, we choose three of the above policies

that differ greatly from each other in terms of cumulative rewards

as low-quality demonstrators (Source 2, Source 3 and Source 4 in

Table 1). The average return of trajectories is shown in Table 1.

In order to verify our ideas, we use two anomaly detection mod-

els, i.e., One-class SVM [36] and Isolation Forest [25], to build the

bonus function. We compare our method with POfD [20], which is

the SOTA method under the setting of LfD, and exploration method

Random Network Distillation (RND) [7]. We use PPO [37] to update

our policy. To better show the impact of different bonus functions

on the training process, we also set the naive PPO method with

and without behavior cloning pre-training as contenders. For be-

havior cloning, we initialize the policy for 40 epochs using Adam

optimizer with L2-loss and a fixed learning rate of 3e-4. We run

10M steps on Reacher and 20M steps on other environments. To

reduce the influence of random seeds on the training results, we

conduct experiments on 5 different random seeds for each method.

5.2 Modification of Bonus
In order to answer Q1, we visualize the bonus given by the policy

trained with AGPO. Specifically, we conduct our experiment on

HalfCheetah, which is an exploration-required environment. We

first use imperfect demonstrations to train 𝐴
d
. The composition

of the demonstration is shown in Table 1. We collect 5 trajectories

from each source and generate an expert demonstration with 20

trajectories. Only 1/4 of the demonstrations are from high-quality

expert (Source 1). Then we collect 20 trajectories using various

policies to build 𝐴q. Finally, we collect another 20 trajectories with

different qualities, and calculate bonus on these trajectories.

The results are shown in Figure 4. Figure 4(a) is the t-SNE vi-

sualization [44] of the evaluation samples, in which high-quality

samples are colored in dark blue. Figure 4(b) is the score given by

𝐴
d
and Figure 4(c) shows the revised bonus given by our method,

in which deep color represents high score. We can observe that,

since low-quality samples account for a larger proportion of expert

demonstration (in Figure 4(b)), low-quality trajectories often get

higher scores only from 𝐴
d
. After being re-weighted by “quality

weight” 𝐴q, high-quality trajectories can obtain higher bonus than

low-quality ones. This result depicts that 𝐴
d
indeed has ability to

cover the original occupancy measure distribution of demonstra-

tions, while the quality weight 𝐴q is able to differ the quality of

𝐴
d
, in order to calibrate the bonus model and thereby effectively

leading the policy imitating the high-quality parts.

0 10

1

(a)

0 10

1

(b)

0 10

1

(c)

Figure 4: Figure (a) is the t-SNE of samples to evaluate. Fig-
ure (b) and (c) are respectively the score based on the sample
density and the bonus given by our method. Dark color rep-
resents higher score.

5.3 Performance
To answerQ2, we design a challenging setting, where only a quarter
of the demonstrations are from the high-quality expert. The number

of trajectories and samples used in this section is shown in Table 2.

In order to further increase the challenge of the task, we refer to

POfD [20] and design the sparse-reward tasks for HalfCheetah and

Walker2d environments. We use the same expert trajectories in

dense-reward environments to guide the sparse-reward tasks, and

use the same cumulative reward as the original task to measure

the performance of the policy. For detailed information about the

environments and corresponding tasks, please refer to the Section

1 of the Supplementary Material.

The experimental results of all contenders and AGPO with two

different anomaly detection methods are shown in Figure 5. From

the results, we can observe that the imperfect demonstration setting

can greatly harm the performance of POfD. In most environments,

POfD performs even worse than the standard RL method PPO. This

observation demonstrates that simplymatching occupancymeasure

under the setting of the imperfect demonstration will indeed mis-

lead the policy into following poor-quality experts. The exploration

method RND can outperform PPO in some exploration-required

environments. But since the direction of exploration is relatively

random, RND converges slowly in most of the environments.
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Figure 5: Learning curves of all methods. Shaded regions indicate the standard deviation of 5 seeds.

Table 2: Information about expert demonstrations used for training

Environment Source 1 Source 2 Source 3 Source 4 Avg Return

HalfCheetah 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 2506

Hopper 4 trajs, 3900 samples 6 trajs, 3589 samples 8 trajs, 3509 samples 10 trajs, 2144 samples 1616

Reacher 5 trajs, 250 samples 5 trajs, 250 samples 5 trajs, 250 samples 5 trajs, 250 samples -4.8

Swimmer 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 94.8

Walker2d 5 trajs, 5000 samples 7 trajs, 4606 samples 6 trajs, 5980 samples 10 trajs, 1401 samples 2297

Cartpole.Swingup 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 316

Finger.Spin 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 5 trajs, 5000 samples 669

Our method AGPO surpasses its contenders in terms of conver-

gence speed and performance in most environments. AGPO has

reached a level close to high-quality demonstrations in HalfChee-
tah, Cartpole Swingup_Sparse, Finger, andWalker2d tasks. In Hopper
and Swimmer tasks, our method even exceeds the best demonstra-

tions. It is worth noting that in Cartpole Swingup_Sparse, HalfChee-
tah_Sparse, andWalker2d_Sparse task, the reward is very sparse, the
agent can only get a certain reward when it reaches a specific tar-

get, which means these tasks are much more challenging than the

others. Experimental results show that our method can still guide

the policy towards high rewards. This verifies that our method

can efficiently utilize imperfect demonstrations even under these

challenging environments.

To further reveal how our method uses expert demonstration to

guide training, we use the policy trained by our method to collect

samples and combine them with expert demonstrations to draw the

t-SNE graph. We collected samples on HalfCheetah, Swimmer, and
Finger.Spin tasks and randomly select 4000 state-action pairs from

each source to generate the graph. As shown in Figure 6, the blue

samples are expert demonstrations; deeper color represents higher

quality; orange samples are collected by our method. From the t-

SNE visualization, the samples generated by the policy of AGPO

(orange dots) almost overlap with high-quality expert demonstra-

tion (dark blue dots). This result demonstrates that our method can

guide the agent to adopt a similar policy to high-quality experts.

5.4 Robustness
To answer Q3, we compare our method with other LfD methods us-

ing different demonstration compositions. We conduct experiments

onHalfCheetah andCartpole.Swingup_Sparse tasks. Demonstrations
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Figure 6: t-SNE graph of expert demonstrations (blue) and samples generated by our method (orange) on three tasks. Samples
generated by our methods demonstrate high similarity with high-quality samples.

Table 3: Average return for demonstrations with different
compositions.

HalfCheetah Cartpole

Demo 1 2506 316

Demo 2 2933 341

Demo 3 3525 454

Demo 4 3994 513

Demo 5 5472 825

of different qualities are generated using policies in Table 1. We

combined these samples in different proportions and generated five

different expert demonstrations for each environment. The average

returns for demonstrations of different quality are shown in Table 3,

in which the number of state-action pairs in these demonstrations

remains the same. The results are shown in Figure 7. The x-axis

represents the sample quality, and the more to the right, the higher

the sample quality. The y-axis represents the average reward of

the trajectories collected by the trained policy. From the results,

we can see that the performance of our method surpasses that of

POfD on demonstrations of different quality. Meanwhile, with the

improvement of demonstration quality, the results of our method

become more stable. This shows the robustness of our method,

which can achieve high performance regardless of the proportion

of imperfect demonstration.

6 CONCLUSION
In this paper, we tackle the challenging learning problem, Learning

from Imperfect Demonstrations (LfID), under which current state-

of-the-art methods fail. The challenge of this problem comes from

the hidden imperfect demonstrations, which cannot be found out

directly without other supervision. So we need to properly evaluate

the quality of provided demonstrations and calibrate the bonus

model from them. Inspired by the anomaly detection methodol-

ogy in the exploration of RL, we propose a novel approach named
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Figure 7: Experimental results of our method (orange line)
and POfD (blue line) on expert samples of different qualities.
The abscissa represents expert samples of different qualities,
and the ordinate represents the average reward of the trajec-
tories obtained by the policy after the training.

Anomaly Guided Policy Optimization (AGPO) to solve the challeng-

ing LfID problem, which can ideally meet the two requirements

above by unifying the homogeneous anomaly detection models

from demonstrations and roll-out samples. Experimental results

under several continuous control environments verify the effective-

ness and robustness of AGPO, which outperforms both the average

performance of demonstrations and state-of-the-art contenders,

with significant gaps. In the future, we expect AGPO can also pro-

vide inspiration in other RL problems, such as the exploration-

exploitation dilemma of the reinforcement learning community.
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