Xin-Qiang Cai @ RIKEN-AIP, Tokyo, Japan

Xin-Qiang Cai

蔡 欣 强

Xin-Qiang Cai

Postdoctoral Researcher,

Imperfect Information Learning Team,

RIKEN Center for Advanced Intelligence Project

[Google Scholar, dblp]

Email: xinqiang.cai [at] riken.jp

(alternative: jkrsndivide [at] gmail.com)

Biography

Currently I am a postdoctoral researcher in the Imperfect Information Learning Team at RIKEN Center for Advanced Intelligence Project, led by professor Masashi Sugiyama.

I got my Ph.D. degree in Department of Complexity Science and Engineering in September 2024 from The University of Tokyo as a member of Sugiyama-Yokoya-Ishida Lab, supervised by professor Masashi Sugiyama. Meanwhile, I worked as a research assistant on Beyond AI Institution.

I got my M.Eng. degree in Computer Science and Technology in June 2021 from Nanjing University as a member of LAMDA Group, supervised by professor Zhi-Hua Zhou and professor Yuan Jiang.

I got my B.Eng. degree in Aircraft Design and Engineering in June 2018 from Northwestern Polytechnical University. In the same year, I was admitted to study for a M.Sc degree in Nanjing University without entrance examination.

Research Interests

Preprint (* denotes equal contributions)

Soichiro Nishimori, Xin-Qiang Cai, Johannes Ackermann, Masashi Sugiyama. Leveraging Domain-Unlabeled Data in Offline Reinforcement Learning across Two Domains. In: Arxiv. [arxiv]

Publication (* denotes equal contributions)

Zelei Cheng, Xian Wu, Jiahao Yu, Shuo Han, Xin-Qiang Cai, Xinyu Xing. Soft-Label Integration for Robust Toxicity Classification. In: Proceedings of the Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS'24), To appear.

Yuting Tang*, Xin-Qiang Cai*, Yao-Xiang Ding, Qiyu Wu, Guoqing Liu, Masashi Sugiyama. Reinforcement Learning from Bagged Reward. In: Proceedings of the 41st International Conference on Machine Learning (ICML'24), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET) workshop, Vienna, Austria, Jul. 21-27, 2024. [arxiv]

Xingyu Song, Zhan Li, Shi Chen, Xin-Qiang Cai, Kazuyuki Demachi. An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video. In: Proceedings of the 27th European Conference on Artificial Intelligence (ECAI'24), Santiago de Compostela, Spain, Oct. 19-24, 2024. [arxiv]

Kaiyan Zhao, Qiyu Wu, Xin-Qiang Cai, Yoshimasa Tsuruoka. Leveraging Multi-lingual Positive Instances in Contrastive Learning to Improve Sentence Embedding. In: Proceedings of the 8th Conference of the European Chapter of the Association for Computational Linguistics (EACL'24), Malta, Mar. 17-22, 2024. [arxiv]

Pushi Zhang*, Baiting Zhu*, Xin-Qiang Cai*, Li Zhao, Masashi Sugiyama, Jiang Bian. IG-Net: Image-Goal Network for Offline Visual Navigation on A Large-Scale Game Map. In: Proceedings of the Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS'23), 6th Robot Learning Workshop, New Orleans, US, Dec. 10-16, 2023. [paper] [openreview]

Xin-Qiang Cai, Yu-Jie Zhang, Chao-Kai Chiang, Masashi Sugiyama. Imitation Learning from Vague Feedback. In: Proceedings of the Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS'23), New Orleans, US, Dec. 10-16, 2023. [paper] [bibtex]

Xin-Qiang Cai, Pushi Zhang, Li Zhao, Jiang Bian, Masashi Sugiyama, Ashley Juan Llorens. Distributional Pareto-Optimal Multi-Objective Reinforcement Learning. In: Proceedings of the Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS'23), New Orleans, US, Dec. 10-16, 2023. [paper] [bibtex]

Xin-Qiang Cai, Yao-Xiang Ding, Zi-Xuan Chen, Yuan Jiang, Masashi Sugiyama, Zhi-Hua Zhou. Seeing Differently, Acting Similarly: Heterogeneously Observable Imitation Learning. In: Proceedings of the Eleventh International Conference on Learning Representations (ICLR'23) (spotlight), Kigali, Rwanda, May 1-5, 2023. [openreview] [paper] [bibtex]

Zi-Xuan Chen*, Xin-Qiang Cai*, Yuan Jiang, Zhi-Hua Zhou. Anomaly Guided Policy Learning from Imperfect Demonstrations. In: Proceedings of the 21st International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'22) (oral), Auckland, New Zealand, May 9-13, 2022. Page: 244-252. [paper] [bibtex]

Xin-Qiang Cai, Yao-Xiang Ding, Yuan Jiang, Zhi-Hua Zhou. Imitation Learning from Pixel-Level Demonstrations by HashReward. In: Proceedings of the 20th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'21) (oral), online, May 3-7, 2021. Page: 279–287. [code] [paper] [bibtex]

Xin-Qiang Cai, Peng Zhao, Kai Ming Ting, Xin Mu, Yuan Jiang. Nearest Neighbor Ensembles: An Effective Method for Difficult Problems in Streaming Classification with Emerging New Classes. In: Proceedings of the 19th IEEE International Conference on Data Mining (ICDM'19), Beijing, China, Nov. 8-11, 2019. Page: 970-975. [code] [paper] [bibtex]

Patent

Service

Conference

Journal

Awards & Honors

Correspondence

Email: cai@ms.k.u-tokyo.ac.jp, jkrsndivide@gmail.com